
1

New Programming Paradigms

Don Batory
Department of Computer Sciences

University of Texas at Austin

2

Setting the Stage...

Today’s paradigm:
n think of programs as values
nmodifications to programs are functions

Composing functions produce new
programs or new versions of old programs

programfunction()newProgram =

3

Of Course, the Problem is...

Effects of virtually all such functions are produced
manually

n costly, error prone, no productivity gains
n ad hoc, ...

Future: reusable functions whose effects are
computed automatically

n current research identified two classes of reusable functions

generic and domain-specific

4

Examples: Generic Functions

Refactorings
n common OO program manipulations

n move a method from a subclass to its superclass
n automating application an OO design pattern

n tool support from vendors now appearing

Aspects (?)
n generic tools for extending, refining arbitrary programs

Generic because they work on all OO programs –
they don’t understand the semantics of the
programs they effect

5

Examples: Domain-Specific

Feature-Oriented Programming
n relies on premeditated designs, product-lines
n function adds a feature to a program

n functions understand the deep structure and semantics of
programs that they transform

n architecturally extensible – add and remove features at will
n benefits extend to modular verification (ex. model checking)

as well

Program = CB()A()

6

Example: Domain-Specific

Domain-Specific Languages
n raising the level of abstraction in programming

n years of results show improved productivity, reduced
maintenance, analyses, etc.

n oddly, most work on compilers deals with traditional issues
(memory management, processor architecture optimizations)

n enormous world of DS compiler optimization problems
awaiting compiler/language researchers

moreConcreteProgram = DSL(moreAbstractProgram)

7

Conclusions

New paradigms satisfy same old model
n programs are values, functions are refinements
n generic or DS functions are reusable and automatic
n easy to recognize work that contributes to this paradigm
n Common: move software design from art-form to science
n Differences: approaches, implementations, problems addressed

Key issues for success:
n support for infrastructure (extensible languages,

program transformations)
n funding research projects (tied to real problems)
n “dating service” to link technology producers with technology

customers
n increase effects of research ten-fold by getting ideas out to

industry faster

